RF safety of wires in interventional MRI: using a safety index.

نویسندگان

  • Christopher J Yeung
  • Robert C Susil
  • Ergin Atalar
چکیده

With the rapid growth of interventional MRI, radiofrequency (RF) heating at the tips of guidewires, catheters, and other wire-shaped devices has become an important safety issue. Previous studies have identified some of the variables that affect the relative magnitude of this heating but none could predict the absolute amount of heating to formulate safety margins. This study presents the first theoretical model of wire tip heating that can accurately predict its absolute value, assuming a straight wire, a homogeneous RF coil, and a wire that does not extend out of the tissue. The local specific absorption rate (SAR) amplification from induced currents on insulated and bare wires was calculated using the method of moments. This SAR gain was combined with a semianalytic solution to the bioheat transfer equation to generate a safety index. The safety index ( degrees C/(W/kg)) is a measure of the in vivo temperature change that can occur with the wire in place, normalized to the SAR of the pulse sequence. This index can be used to set limits on the spatial peak SAR of pulse sequences that are used with the interventional wire. For the case of a straight resonant wire in a tissue with very low perfusion, only about 100 mW/kg/ degrees C spatial peak SAR may be used at 1.5 T. But for < or =10-cm wires with an insulation thickness > or =30% of the wire radius that are placed in well-perfused tissues, normal operating conditions of 4 W/kg spatial peak SAR are possible at 1.5 T. Further model development to include the influence of inhomogeneous RF, curved wires, and wires that extend out of the sample are required to generate safety indices that are applicable to common clinical situations. We propose a simple way to ensure safety when using an interventional wire: set a limit on the SAR of allowable pulse sequences that is a factor of a safety index below the tolerable temperature increase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RF heating due to conductive wires during MRI depends on the phase distribution of the transmit field.

In many studies concerning wire heating during MR imaging, a "resonant wire length" that maximizes RF heating is determined. This may lead to the nonintuitive conclusion that adding more wire, so as to avoid this resonant length, will actually improve heating safety. Through a theoretical analysis using the method of moments, we show that this behavior depends on the phase distribution of the R...

متن کامل

3-D RF Coil Design Considerations for MRI

High-frequency coils are widely used in medical applications, such as Magnetic Resonance Imaging (MRI) systems. A typical medical MRI includes a local radio frequency transmit/receive coil. This coil is designed for maximum energy transfer or wave transfer through magnetic resonance. Mutual inductance is a dynamic parameter that determines the energy quantity to be transferred wirelessly by ele...

متن کامل

Evaluation of RF Heating of a Multi-Mode Intravascular MRI Coil

Accurate and reliable guidance is crucial for catheter-based treatment of cardiac diseases such as atrial fibrillation. Magnetic resonance imaging (MRI) is a preferable choice because of good soft tissue contrast, 3D capability, and lack of ionizing radiation. Higher resolution imaging of the region of interest such as arteries and pulmonary vein is desirable. Intravascular MRI coils have been ...

متن کامل

A Green's function approach to local rf heating in interventional MRI.

Current safety regulations for local radiofrequency (rf) heating, developed for externally positioned rf coils, may not be suitable for internal rf coils that are being increasingly used in interventional MRI. This work presents a two-step model for rf heating in an interventional MRI setting: (1) the spatial distribution of power in the sample from the rf pulse (Maxwell's equations); and (2) t...

متن کامل

Radiofrequency Safety for Interventional MRI Procedures1

During an interventional magnetic resonance imaging (MRI) procedure, various kinds of surgical and interventional devices, such as needles, catheters, and guidewires, that contain metallic components are used inside the MRI scanner. Interference of these devices with radiofrequency pulses is known to be a possible health risk. The radiofrequency (RF) power delivered by an RF body coil may becom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 47 1  شماره 

صفحات  -

تاریخ انتشار 2002